Uranium glass is glass which has had uranium, usually in oxide diuranate form, added to a glass mix before melting for colouration. The proportion usually varies from trace levels to about 2% uranium by weight, although some 20th-century pieces were made with up to 25% uranium.
First identified in 1789 by a German chemist, uranium was soon being added to decorative glass for its fluorescent effect. James Powell’s Whitefriars glass company in London, England, was one of the first to market the glowing glass, but other manufacturers soon realised its sales potential and Uranium glass was produced across Europe and later North America.
Uranium glass was once made into tableware and household items, but fell out of widespread use when the availability of uranium to most industries was sharply curtailed during the Cold War in the 1940s to 1990s. Most such objects are now considered antiques or retro-era collectibles, although there has been a minor revival in art glassware. Otherwise, modern uranium glass is now mainly limited to small objects like beads or marbles as scientific or decorative novelties.
The normal colour of uranium glass ranges from yellow to green depending on the oxidation state and concentration of the metal ions, although this may be altered by the addition of other elements as glass colorants. Uranium glass also fluoresces bright green under ultraviolet light and can register above background radiation on a sufficiently sensitive Geiger counter, although most pieces of uranium glass are considered to be harmless and only negligibly radioactive.
File:Uranium glass beads, black background.jpg|Modern uranium glass beads (black background)
File:Uranium glass beads, UV light.jpg|Modern uranium glass beads (UV light)
The most common color of uranium glass is pale yellowish-green, which in the 1930s led to the nickname "Vaseline glass", based on a perceived resemblance to the appearance of Vaseline-brand petroleum jelly as formulated at that time.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Uranium dioxide or uranium(IV) oxide (), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear reactors. A mixture of uranium and plutonium dioxides is used as MOX fuel. Prior to 1960, it was used as yellow and black color in ceramic glazes and glass. Uranium dioxide is produced by reducing uranium trioxide with hydrogen.
Depleted uranium (DU; also referred to in the past as Q-metal, depletalloy or D-38) is uranium with a lower content of the fissile isotope than natural uranium. Natural uranium contains about , while the DU used by the U.S. Department of Defense contains or less. The less radioactive and non-fissile constitutes the main component of depleted uranium. Uses of DU take advantage of its very high density of , denser than lead.
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light.
In the present invention, we propose a method of creating fluorescent color images visible under UV light. It relies on the new colorants that can be achieved by superposing ink dots, possibly at a reduced size, in order to avoid quenching effects. It also ...
The activation of small molecules is a paramount challenge in modern chemistry. The use of cheap and abundant molecules such as N2, H2, CO2, or CO as energy supplies or as precursors for fine chemicals production is highly desirable. In particular, the onl ...
For the purpose of studying a heterogeneous multiplying medium, the author proposes dividing it into a number of homogeneous regions having the diffusion and absorption properties of the pure moderator. The fuel elements, represented by portions of active ...