In chemistry, a Zintl phase is a product of a reaction between a group 1 (alkali metal) or group 2 (alkaline earth metal) and main group metal or metalloid (from groups 13, 14, 15, or 16). It is characterized by intermediate metallic/ionic bonding. Zintl phases are a subgroup of brittle, high-melting intermetallic compounds that are diamagnetic or exhibit temperature-independent paramagnetism and are poor conductors or semiconductors.
This type of solid is named after German chemist Eduard Zintl who investigated them in the 1930s. The term "Zintl Phases" was first used by Laves in 1941. In his early studies, Zintl noted that there was an atomic volume contraction upon the formation of these products and realized that this could indicate cation formation. He suggested that the structures of these phases were ionic, with complete electron transfer from the more electropositive metal to the more electronegative main group element. The structure of the anion within the phase is then considered on the basis of the resulting electronic state. These ideas are further developed in the Zintl-Klemm-Busmann concept, where the polyanion structure should be similar to that of the isovalent element. Further, the anionic sublattice can be isolated as polyanions (Zintl ions) in solution and are the basis of a rich subfield of main group inorganic chemistry.
A "Zintl Phase" was first observed in 1891 by M. Joannis, who noted an unexpected green colored solution after dissolving lead and sodium in liquid ammonia, indicating the formation of a new product. It was not until many years later, in 1930, that the stoichiometry of the new product was identified as Na4Pb94- by titrations performed by Zintl et al.; and it was not until 1970 that the structure was confirmed by crystallization with ethylenediamine (en) by Kummer.
In the intervening years and in the years since, many other reaction mixtures of metals were explored to provide a great number of examples of this type of system.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Introduction to materials structure including crystallography, the structure of amorphous materials such as glasses, polymers and biomaterials as well as the basics of characterization techniques.
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metals, other metals, p-block metals and chemically weak metals. The most common name, post-transition metals, is generally used in this article. Physically, these metals are soft (or brittle), have poor mechanical strength, and usually have melting points lower than those of the transition metals.
An intermetallic (also called an intermetallic compound, intermetallic alloy, ordered intermetallic alloy, and a long-range-ordered alloy) is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Intermetallics are generally hard and brittle, with good high-temperature mechanical properties. They can be classified as stoichiometric or nonstoichiometic intermetallic compounds.
In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids.
Precise control of multiple spin states on the atomic scale presents a promising avenue for designing and realizing magnetic switches. Despite substantial progress in recent decades, the challenge of achieving control over multiconfigurational reversible s ...
This Thesis provides a comprehensive and correlative investigation of the microstructure, chemical state, and electrochemical reactivity of manganese oxide (MnOx) films, aiming to gain a deeper understanding of the deposition and dissolution mechanism of M ...
One of the biggest driving forces in cement research today is the mitigation of the CO2 emissions caused by its production. A potential solution to reduce the environmental impact is to replace cement with supplementary cementitious materials (SCMs). This ...