Concept

Adjoint bundle

In mathematics, an adjoint bundle is a vector bundle naturally associated to any principal bundle. The fibers of the adjoint bundle carry a Lie algebra structure making the adjoint bundle into a (nonassociative) algebra bundle. Adjoint bundles have important applications in the theory of connections as well as in gauge theory. Let G be a Lie group with Lie algebra , and let P be a principal G-bundle over a smooth manifold M. Let be the (left) adjoint representation of G. The adjoint bundle of P is the associated bundle The adjoint bundle is also commonly denoted by . Explicitly, elements of the adjoint bundle are equivalence classes of pairs [p, X] for p ∈ P and X ∈ such that for all g ∈ G. Since the structure group of the adjoint bundle consists of Lie algebra automorphisms, the fibers naturally carry a Lie algebra structure making the adjoint bundle into a bundle of Lie algebras over M. Let G be any Lie group with Lie algebra , and let H be a closed subgroup of G. Via the (left) adjoint representation of G on , G becomes a topological transformation group of . By restricting the adjoint representation of G to the subgroup H, also H acts as a topological transformation group on . For every h in H, is a Lie algebra automorphism. Since H is a closed subgroup of the Lie group G, the homogeneous space M=G/H is the base space of a principal bundle with total space G and structure group H. So the existence of H-valued transition functions is assured, where is an open covering for M, and the transition functions form a cocycle of transition function on M. The associated fibre bundle is a bundle of Lie algebras, with typical fibre , and a continuous mapping induces on each fibre the Lie bracket. Differential forms on M with values in are in one-to-one correspondence with horizontal, G-equivariant Lie algebra-valued forms on P. A prime example is the curvature of any connection on P which may be regarded as a 2-form on M with values in . The space of sections of the adjoint bundle is naturally an (infinite-dimensional) Lie algebra.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.