In mathematics, an adjoint bundle is a vector bundle naturally associated to any principal bundle. The fibers of the adjoint bundle carry a Lie algebra structure making the adjoint bundle into a (nonassociative) algebra bundle. Adjoint bundles have important applications in the theory of connections as well as in gauge theory.
Let G be a Lie group with Lie algebra , and let P be a principal G-bundle over a smooth manifold M. Let
be the (left) adjoint representation of G. The adjoint bundle of P is the associated bundle
The adjoint bundle is also commonly denoted by . Explicitly, elements of the adjoint bundle are equivalence classes of pairs [p, X] for p ∈ P and X ∈ such that
for all g ∈ G. Since the structure group of the adjoint bundle consists of Lie algebra automorphisms, the fibers naturally carry a Lie algebra structure making the adjoint bundle into a bundle of Lie algebras over M.
Let G be any Lie group with Lie algebra , and let H be a closed subgroup of G.
Via the (left) adjoint representation of G on , G becomes a topological transformation group of .
By restricting the adjoint representation of G to the subgroup H,
also H acts as a topological transformation group on . For every h in H, is a Lie algebra automorphism.
Since H is a closed subgroup of the Lie group G, the homogeneous space M=G/H is the base space of a principal bundle with total space G and structure group H. So the existence of H-valued transition functions is assured, where is an open covering for M, and the transition functions form a cocycle of transition function on M.
The associated fibre bundle is a bundle of Lie algebras, with typical fibre , and a continuous mapping induces on each fibre the Lie bracket.
Differential forms on M with values in are in one-to-one correspondence with horizontal, G-equivariant Lie algebra-valued forms on P. A prime example is the curvature of any connection on P which may be regarded as a 2-form on M with values in .
The space of sections of the adjoint bundle is naturally an (infinite-dimensional) Lie algebra.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.
In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(n)-structure defines a Riemannian metric, and for the special linear group an SL(n,R)-structure is the same as a volume form.
Every principal G-bundle over X is classified up to equivalence by a homotopy class X -> BG, where BG is the classifying space of G. On the other hand, for every nice topological space X Milnor constructed a strict model of its loop space (Omega) over tild ...