CS-421: Machine learning for behavioral dataComputer environments such as educational games, interactive simulations, and web services provide large amounts of data, which can be analyzed and serve as a basis for adaptation. This course will co
COM-300: Stochastic models in communicationL'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
BIO-377: Physiology by systemsLe but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
CIVIL-459: Deep learning for autonomous vehiclesDeep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
CS-526: Learning theoryMachine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.
CS-479: Learning in neural networksArtificial Neural Networks are inspired by Biological Neural Networks. One big difference is
that optimization in Deep Learning is done with the BackProp Algorithm, whereas in biological neural
netwo
MATH-431: Theory of stochastic calculusIntroduction to the mathematical theory of stochastic calculus: construction of stochastic Ito integral, proof of Ito formula, introduction to stochastic differential equations, Girsanov theorem and F