MGT-502: Data science and machine learningHands-on introduction to data science and machine learning. We explore recommender systems, generative AI, chatbots, graphs, as well as regression, classification, clustering, dimensionality reduction
CIVIL-459: Deep learning for autonomous vehiclesDeep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
EE-613: Machine Learning for EngineersThe objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
CS-456: Deep reinforcement learningThis course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
MATH-512: Optimization on manifoldsWe develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann
MATH-341: Linear modelsRegression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
MATH-106(f): Analysis IIÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m