EE-568: Reinforcement learningThis course describes theory and methods for Reinforcement Learning (RL), which revolves around decision making under uncertainty. The course covers classic algorithms in RL as well as recent algorith
EE-411: Fundamentals of inference and learningThis is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
ME-474: Numerical flow simulationThis course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Ma
ME-427: Networked control systemsThis course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
EE-559: Deep learningThis course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.