EE-311: Fundamentals of machine learningCe cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
CS-450: Algorithms IIA first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
MATH-131: Probability and statisticsLe cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
CS-456: Deep reinforcement learningThis course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
CS-526: Learning theoryMachine learning and data analysis are becoming increasingly central in many sciences and applications. This course concentrates on the theoretical underpinnings of machine learning.