ME-419: Production managementProduction management deals with producing goods sustainably at the right time, quantity, and quality with the minimum cost. This course equips students with practical skills and tools for effectively
ChE-312: Numerical methodsThis course introduces students to modern computational and mathematical techniques for solving problems in chemistry and chemical engineering. The use of introduced numerical methods will be demonstr
MSE-101(a): Materials:from chemistry to propertiesCe cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
CS-119(h): Information, Computation, CommunicationL'objectif de ce cours est d'initier les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'informatique et des communications et de développer une première compétence
MGT-418: Convex optimizationThis course introduces the theory and application of modern convex optimization from an engineering perspective.
CH-310: Dynamics and kineticsThe course covers the principles of chemical kinetics, including differential rate laws, derivation of exact and approximate integral rate laws for common elementary and composite reactions, fundament
EE-536: Physical models for micro and nanosystemsStudents will learn simple theoretical models, the theoretical background of finite element modeling as well as its application to modeling charge, mass and heat transport in electronic, fluidic and e
ENV-525: Physics and hydrology of snowThis course covers principles of snow physics, snow hydrology, snow-atmosphere interaction, and snow modeling. It transmits detailed understanding of physical processes within the snow and at its inte
MATH-106(f): Analysis IIÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an