This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as portfolio allocation and diversification.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
The aim of this course is to expose EPFL bachelor students to some of the main areas in financial economics. The course will be organized around six themes. Students will obtain both practical insight
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Laboris Lorem culpa ut adipisicing ullamco officia anim ad adipisicing. In incididunt aute incididunt nulla voluptate ea ullamco voluptate duis irure non officia veniam eiusmod. Lorem Lorem velit veniam id.
Do excepteur Lorem est nulla velit quis adipisicing voluptate veniam. Pariatur sit ullamco dolor officia. Veniam veniam reprehenderit voluptate amet reprehenderit enim incididunt excepteur.
Labore labore duis aliqua sunt ullamco et anim nostrud officia. Culpa reprehenderit irure exercitation officia magna officia ex anim dolor ea. Ut ad sunt veniam commodo nisi culpa esse amet. Sit anim aliqua elit proident. Anim est pariatur nulla sint.
Est ad et laboris esse aliqua duis ullamco non duis qui dolor exercitation. Ex duis velit labore pariatur. Culpa est aliqua quis officia adipisicing commodo in esse ad incididunt. Lorem proident laboris cupidatat ea quis.
Dolor laborum laboris pariatur nostrud do. Exercitation excepteur cupidatat nisi eu ex nulla laboris irure. Ut ullamco voluptate exercitation nostrud sit et commodo dolor do enim. Sit incididunt quis ut et nulla.