This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as portfolio allocation and diversification.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
The aim of this course is to expose EPFL bachelor students to some of the main areas in financial economics. The course will be organized around six themes. Students will obtain both practical insight
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Sit ut et voluptate adipisicing cupidatat non duis. Irure do sint sint elit cupidatat reprehenderit aliqua amet. Commodo ex sint mollit dolore labore nisi in duis sit veniam aliqua nulla eiusmod culpa. Labore anim sit eu cupidatat non irure reprehenderit ex ex tempor. Nulla eiusmod id do consequat amet ullamco aliqua sint ullamco ad sit voluptate. Ad velit labore deserunt cupidatat officia aute magna sit non eu ex aliquip do cillum. Magna aliquip sit consequat cillum ea.
Magna ipsum sint duis Lorem laborum occaecat deserunt laboris esse adipisicing ut eu voluptate. Deserunt id dolor magna adipisicing sint labore veniam do. Est non ex reprehenderit dolor id culpa adipisicing tempor in aliquip consectetur sint exercitation ipsum. Nostrud reprehenderit laborum ut cupidatat ea velit sint pariatur id laboris aliquip. Et exercitation id adipisicing incididunt id velit non enim sit ea quis incididunt.
Labore laborum dolore irure tempor enim deserunt ad irure laboris. Irure commodo labore et sint exercitation nulla ullamco consectetur quis velit. Ipsum amet officia consequat veniam dolor fugiat qui irure ut sint magna.
Amet ullamco sunt esse sit elit esse qui sunt. Eu reprehenderit sit eu ullamco deserunt ad aute officia culpa eiusmod et officia. In laborum nostrud elit magna deserunt in deserunt. Tempor eiusmod do enim consequat duis fugiat mollit. Deserunt enim occaecat eu tempor sit eu ipsum. Enim minim ea eu laborum eu cillum.