ENG-209: Data science for engineers with PythonCe cours est divisé en deux partie. La première partie présente le langage Python et les différences notables entre Python et C++ (utilisé dans le cours précédent ICC). La seconde partie est une intro
MATH-665: Functional Data AnalysisA rigorous introduction to the statistical analysis of random functions and associated random operators. Viewing random functions either as random Hilbert vectors or as stochastic processes, we will s
MATH-410: Riemann surfacesThis course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
PHYS-435: Statistical physics IIIThis course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
MATH-519: Topics in high-dimensional probabilityThis is a theoretical course about probability in high dimensions. We will look at some mathematical phenomena appearing as the number of random variables grows large - e.g. concentration of measure o
MATH-101(c): Analysis IÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
COM-308: Internet analyticsInternet analytics is the collection, modeling, and analysis of user data in large-scale online services, such as social networking, e-commerce, search, and advertisement. This class explores a number
PHYS-432: Quantum field theory IIThe goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
EE-559: Deep learningThis course explores how to design reliable discriminative and generative neural networks, the ethics of data acquisition and model deployment, as well as modern multi-modal models.