EE-411: Fundamentals of inference and learningThis is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
CS-401: Applied data analysisThis course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
MATH-485: Introduction to stochastic PDEsStochastic PDEs are used to model systems that are spatially extended and include a random component. This course gives an introduction to this topic, including some general measure theory, some Gauss
MATH-413: Statistics for data scienceStatistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
MGT-416: Causal inferenceStudents will learn the core concepts and techniques of network analysis with emphasis on causal inference. Theory and
application will be balanced, with students working directly with network data th
MATH-240: StatisticsCe cours donne une introduction au traitement mathématique de la théorie de l'inférence statistique en utilisant la notion de vraisemblance comme un thème central.
MATH-444: Multivariate statisticsMultivariate statistics focusses on inferring the joint distributional properties of several random variables, seen as random vectors, with a main focus on uncovering their underlying dependence struc