PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-450: Algorithms IIA first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
PHYS-512: Statistical physics of computationThe students understand tools from the statistical physics of disordered systems, and apply them to study computational and statistical problems in graph theory, discrete optimisation, inference and m
MATH-467: Probabilistic methods in combinatoricsThe 'probabilistic method' is a fundamental tool in combinatorics. The basic idea is as follows: to prove that an object (for example, graph) with certain properties exists, it suffices to prove that
ME-427: Networked control systemsThis course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
PHYS-435: Statistical physics IIIThis course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
CS-250: Algorithms IThe students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma