**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Course# MATH-605: Conformal bootstrap and Liouville conformal field

Summary

The course will focus on a probabilistic construction of a conformal field theory related to random Riemann surfaces, called the Liouville conformal field theory. The symmetries of the theory allow to express the n-point correlation functions in terms of 3-points correlation functions on S^2.

Official source

Moodle Page

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (2)

Related MOOCs (9)

Related concepts (70)

PHYS-739: Conformal Field theory and Gravity

This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.

MATH-201: Analysis III

Calcul différentiel et intégral: Eléments d'analyse vectorielle, intégration par partie, intégrale curviligne, intégrale de surface, théorèmes de Stokes, Green, Gauss, fonctions harmoniques;
Eléments

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points.

A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations. In contrast to other types of conformal field theories, two-dimensional conformal field theories have infinite-dimensional symmetry algebras. In some cases, this allows them to be solved exactly, using the conformal bootstrap method. Notable two-dimensional conformal field theories include minimal models, Liouville theory, massless free bosonic theories, Wess–Zumino–Witten models, and certain sigma models.

In physics, Liouville field theory (or simply Liouville theory) is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation. Liouville theory is defined for all complex values of the central charge of its Virasoro symmetry algebra, but it is unitary only if and its classical limit is Although it is an interacting theory with a continuous spectrum, Liouville theory has been solved. In particular, its three-point function on the sphere has been determined analytically.

The conformal bootstrap is a non-perturbative mathematical method to constrain and solve conformal field theories, i.e. models of particle physics or statistical physics that exhibit similar properties at different levels of resolution. Unlike more traditional techniques of quantum field theory, conformal bootstrap does not use the Lagrangian of the theory. Instead, it operates with the general axiomatic parameters, such as the scaling dimensions of the local operators and their operator product expansion coefficients.

In mathematics, the Riemann sphere, named after Bernhard Riemann, is a model of the extended complex plane: the complex plane plus one point at infinity. This extended plane represents the extended complex numbers, that is, the complex numbers plus a value for infinity. With the Riemann model, the point is near to very large numbers, just as the point is near to very small numbers. The extended complex numbers are useful in complex analysis because they allow for division by zero in some circumstances, in a way that makes expressions such as well-behaved.