COM-502: Dynamical system theory for engineersLinear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
CS-442: Computer visionComputer Vision aims at modeling the world from digital images acquired using video or infrared cameras, and other imaging sensors.
We will focus on images acquired using digital cameras. We will int
MATH-562: Statistical inferenceInference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
PHYS-231: Data analysis for PhysicsCe cours présentera les bases de l'analyse des données et de l'apprentissage à partir des données, l'estimation des erreurs et la stochasticité en physique. Les concepts seront introduits théoriquemen
EE-568: Reinforcement learningThis course describes theory and methods for Reinforcement Learning (RL), which revolves around decision making under uncertainty. The course covers classic algorithms in RL as well as recent algorith
CS-625: Transfer learning and meta-learningThis seminar course covers principles and recent advancements in machine learning methods that have the ability to solve multiple tasks and generalize to new domains in which training and test distrib
MATH-240: StatisticsCe cours donne une introduction au traitement mathématique de la théorie de l'inférence statistique en utilisant la notion de vraisemblance comme un thème central.