PHYS-491: Magnetism in materialsThe lectures will provide an introduction to magnetism in materials, covering fundamentals of spin and orbital degrees of freedom, interactions between moments and some typical ordering patterns. Sele
MSE-486: Organic electronic materialsThis course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
MATH-497: Topology IV.b - homotopy theoryWe propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
CH-453: Molecular quantum dynamicsThe course covers several exact, approximate, and numerical methods to solve the time-dependent molecular Schrödinger equation, and applications including calculations of molecular electronic spectra.
MSE-101(b): Materials:from chemistry to propertiesCe cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
PHYS-502: Interacting quantum matterThis course presents modern aspects of theoretical condensed matter physics with interfaces to statistical physics, quantum information theory, quantum field theory and quantum simulation.
PHYS-114: General physics : electromagnetismLe cours traite des concepts de l'électromagnétisme, avec le support d'expériences. Les sujets traités inclus l'électrostatique, le courant électrique et circuits, la magnétostatique, l'induction élec
MICRO-435: Quantum and nanocomputingThe course teaches non von-Neumann architectures. The first part of the course deals with quantum computing, sensing, and communications. The second focuses on field-coupled and conduction-based nanoc
MATH-512: Optimization on manifoldsWe develop, analyze and implement numerical algorithms to solve optimization problems of the form min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Riemann