This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Vincenzo Savona studied physics in Pisa at the Scuola Normale Superiore and the University of Pisa, prior to completing his PhD at the EPFL's Institute of Theoretical Physics. Subsequently he did post-doctoral work, first at the EPFL and then in the physics department of the Humboldt University of Berlin. In 2002, he returned to the EPFL to create his own research group, receiving a "professeur boursier" fellowship from the Swiss National Science Foundation. In 2006, he was appointed tenure-track assistant professor at the EPFL and joined the NCCR for Quantum Photonics. In 2010 he was appointed associate professor. Currently he directs the Laboratory of Theoretical Physics of Nanosystems.
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
A broad view of the diverse aspects of the field is provided: quantum physics, communication, quantum computation, simulation of physical systems, physics of qubit platforms, hardware technologies. St
Today one is able to manipulate matter at the nanoscale were quantum behavior becomes important and possibly information processing will have to take into account laws of quantum physics. We introduce
This course will give an overview of the experimental state of the art of quantum technology for Quantum Information Processing (QIP). We will explore some of the most promising approaches for realizi