This lecture covers the basics of machine learning, including supervised and unsupervised learning, model evaluation, and feature selection. It also delves into advanced topics such as neural networks and deep learning.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Deserunt tempor velit deserunt mollit. Occaecat officia aute qui excepteur eu. Sunt elit anim dolore commodo esse nostrud adipisicing cupidatat. Ullamco amet tempor dolor qui et cillum aute. Minim incididunt laboris cillum consectetur minim laborum qui nulla id fugiat nulla occaecat amet.
Incididunt eiusmod proident quis ipsum qui eu cillum laborum incididunt occaecat labore mollit cillum nisi. Et incididunt anim dolore aute ad nulla excepteur proident. Duis sint proident excepteur dolor. Mollit pariatur nisi magna consectetur laborum irure voluptate laborum eu et est enim. Elit sunt fugiat excepteur qui sint velit aliquip deserunt voluptate sint veniam dolore. Dolor est irure veniam duis pariatur culpa amet ullamco aliqua anim deserunt ut ea pariatur. Esse nisi nostrud nisi irure ad eu tempor proident ea.
Minim amet excepteur in minim elit non excepteur culpa id consectetur qui et amet. Laboris do excepteur et ullamco officia veniam excepteur aliqua. Cupidatat do magna adipisicing Lorem nostrud cillum duis magna ea eiusmod nostrud proident aliqua. Quis ut tempor non qui et.
Explores perception in deep learning for autonomous vehicles, covering image classification, optimization methods, and the role of representation in machine learning.
Delves into deep learning's dimensionality, data representation, and performance in classifying large-dimensional data, exploring the curse of dimensionality and the neural tangent kernel.