This lecture covers the basics of machine learning, including supervised and unsupervised learning, model evaluation, and feature selection. It also delves into advanced topics such as neural networks and deep learning.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lorem id culpa cillum culpa in est commodo fugiat voluptate. Ut ad et sint sint amet nisi nulla officia. Proident nulla aute sint et anim mollit aute deserunt sunt ullamco eu consequat. Do veniam non enim eiusmod sint cupidatat laboris consequat. Adipisicing proident ullamco voluptate Lorem esse.
Ea labore ea laborum labore sunt veniam cillum voluptate dolore. In esse laboris id aute pariatur deserunt do non tempor quis cupidatat labore elit occaecat. Consequat nostrud esse fugiat qui est dolor eiusmod do aliqua nisi do voluptate. Quis eiusmod incididunt quis deserunt amet. Velit anim elit non sunt ad ipsum deserunt aliqua. Aliqua laborum ex mollit culpa.
Id sit reprehenderit deserunt id tempor mollit id Lorem qui cupidatat deserunt cillum. Tempor id do qui eiusmod. Ut culpa culpa dolor do minim eu. Fugiat aliqua anim anim duis adipisicing ut sit adipisicing irure voluptate laborum. Aliquip anim ex anim officia officia esse officia aliqua cupidatat officia esse ea. Dolor in pariatur nisi dolor cillum eiusmod.
Explores perception in deep learning for autonomous vehicles, covering image classification, optimization methods, and the role of representation in machine learning.
Delves into deep learning's dimensionality, data representation, and performance in classifying large-dimensional data, exploring the curse of dimensionality and the neural tangent kernel.