Skip to main content
Graph
Search
fr
|
en
Login
Search
All
Categories
Concepts
Courses
Lectures
MOOCs
People
Practice
Publications
Startups
Units
Show all results for
Home
Lecture
Latent Space Models for Multiplex Networks
Graph Chatbot
Related lectures (32)
Previous
Page 2 of 4
Next
Logistic Regression: Statistical Inference and Machine Learning
Covers logistic regression, likelihood function, Newton's method, and classification error estimation.
Logistic Regression: Model Interpretation and Comparison
Explores logistic regression model interpretation, parameter estimation, and model comparison using likelihood ratio tests.
Horseshoe Crabs: Logistic Regression Analysis
Explores logistic regression analysis of horseshoe crab data, focusing on odds ratio interpretation and model fitting.
Estimation and Confidence Intervals
Explores bias, variance, and confidence intervals in parameter estimation using examples and distributions.
Personalized Menu Optimization
Explores Bayesian methods in choice modeling for personalized menu optimization and individual choice prediction.
Confidence Intervals: Definition and Estimation
Explains confidence intervals, parameter estimation methods, and the central limit theorem in statistical inference.
Mixture models: latent classes
Explores latent classes in mixture models for discrete choice modeling using the Swissmetro dataset, discussing class-specific models and random parameters estimation.
Intro to Quantum Sensing: Parameter Estimation and Fisher Information
Introduces Fisher Information for parameter estimation based on collected data.
Parameter Estimation
Discusses parameter estimation, including checks, quality, distribution, and statistical properties of estimates.
Modeling Neurobiological Signals: Spikes & Firing Rate
Explores modeling neurobiological signals, focusing on spikes, firing rate, multiple state neurons, and parameter estimation.