Lecture

Markov Chains: Basics and Applications

In course
DEMO: adipisicing adipisicing esse
Reprehenderit labore elit incididunt occaecat est ut enim velit ex quis cupidatat id ullamco sunt. Tempor esse anim nostrud ea enim aliquip do qui commodo tempor et. Et proident est mollit eiusmod aliquip eiusmod eiusmod. Qui voluptate dolore ipsum Lorem exercitation ex anim. Velit excepteur ea velit cupidatat in in velit reprehenderit officia id ut esse. Ea enim nisi fugiat ullamco labore proident non cupidatat pariatur do aliquip duis voluptate.
Login to see this section
Description

This lecture covers the fundamentals of Markov chains, focusing on discrete time and discrete space Markov chains. It explains the Markov property, transition matrices, generation algorithms, and examples like random walks. It also delves into continuous space Markov chains, transition kernels, and Poisson processes. The lecture concludes with discussions on non-homogeneous Poisson processes and general continuous time Markov chains.

Instructor
fugiat sit adipisicing
Ea cupidatat ullamco occaecat excepteur id velit incididunt cillum Lorem laborum. Nostrud mollit qui amet dolore qui adipisicing sit dolore et et. Proident laborum in anim elit sint dolore mollit officia laboris cupidatat id magna labore. Sunt consequat pariatur dolor est adipisicing cillum dolore et nulla esse.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (33)
Approximation Landau: Ising Model
Explores the Landau approximation applied to the Ising model in statistical physics.
Generation of Markov Processes
Covers the generation of Markov processes and Markov chains, including transition matrices and stochastic matrices.
Discrete-Time Markov Chains: Definitions
Covers the definitions and state probabilities of discrete-time Markov chains.
Fundamental Solutions of Laplace Equation
Explores fundamental solutions, Green's formula, distributions, and convergence in Laplace equation.
Hidden Markov Models: Primer
Introduces Hidden Markov Models, explaining the basic problems and algorithms like Forward-Backward, Viterbi, and Baum-Welch, with a focus on Expectation-Maximization.
Show more