**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Propagation of Fronts in 1D

Description

This lecture covers the propagation of fronts in 1D systems using a mechanical analogy, focusing on bistable systems and the Kolmogorov-Fisher equation. The slides illustrate the concept of bistability, different cases of wave propagation, and the mechanical analogy for the problem f(u) = u(1-u)(u-a). The instructor discusses the existence of fronts in spatial systems, the different cases of propagation velocities, and the quartic potential. The lecture also delves into the Kolmogorov-Fisher equation, the cubic case, and the prediction capabilities of the mechanical analogy. Furthermore, the slides touch upon the concept of heteroclinic orbits and the spatial coordination of the Xenopus cell cycle.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructors (2)

Related concepts (80)

BIO-341: Dynamical systems in biology

Ce cours introduit les systèmes dynamiques pour modéliser des réseaux biologiques simples. L'analyse qualitative de modèles dynamiques non-linéaires est développée de pair avec des simulations numériq

Propagation constant

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the change per unit length, but it is otherwise dimensionless. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

Wave

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave.

Phase velocity

The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave (for example, the crest) will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and time period T as Equivalently, in terms of the wave's angular frequency ω, which specifies angular change per unit of time, and wavenumber (or angular wave number) k, which represent the angular change per unit of space, To gain some basic intuition for this equation, we consider a propagating (cosine) wave A cos(kx − ωt).

Group velocity

The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space. For example, if a stone is thrown into the middle of a very still pond, a circular pattern of waves with a quiescent center appears in the water, also known as a capillary wave. The expanding ring of waves is the wave group or wave packet, within which one can discern individual waves that travel faster than the group as a whole.

Velocity factor

The velocity factor (VF), also called wave propagation speed or velocity of propagation (VoP or of a transmission medium is the ratio of the speed at which a wavefront (of an electromagnetic signal, a radio signal, a light pulse in an optical fibre or a change of the electrical voltage on a copper wire) passes through the medium, to the speed of light in vacuum. For optical signals, the velocity factor is the reciprocal of the refractive index.