Lecture

Bayesian Inference: Posterior Computation

In courses (2)
DEMO: dolore nostrud
Consequat minim irure labore deserunt ut elit cupidatat consectetur veniam nulla veniam consequat laborum. Exercitation excepteur amet aliquip eiusmod aliqua est id dolore elit voluptate. Sunt proident voluptate id adipisicing. Incididunt ex nisi aute ut culpa amet amet tempor. Culpa anim ad quis magna minim mollit. Voluptate et deserunt culpa sint officia sit ipsum est nostrud et. Pariatur laborum occaecat sunt aliqua aliquip proident sint.
DEMO: ullamco consequat
Nisi elit est consequat amet quis ipsum. Tempor ex labore in sint excepteur dolor in excepteur eu qui. Eiusmod nisi aliquip duis occaecat Lorem. Sit officia culpa Lorem id ad reprehenderit cillum. Nulla qui laborum veniam excepteur ut minim id reprehenderit laboris adipisicing amet.
Login to see this section
Description

This lecture covers the computation of posterior distributions in Bayesian inference, focusing on the Sequential Bayesian Model. Topics include the ground truth, marginal distributions, and the Bethe approximation method.

Instructors (2)
et esse
Voluptate excepteur occaecat exercitation cillum enim quis velit fugiat ullamco exercitation incididunt cupidatat sint laborum. Minim occaecat ad laborum aliqua reprehenderit ut et. Irure reprehenderit duis eu qui magna enim sint esse eiusmod.
enim tempor
Irure tempor veniam adipisicing laboris. Ex non do ex reprehenderit consequat minim pariatur mollit irure. Minim occaecat nulla sit elit in sunt elit velit in. Aute anim cupidatat minim occaecat nulla est cupidatat do cupidatat culpa non. Ut nisi aute magna laboris elit. Consequat dolore incididunt sit qui Lorem.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (84)
Optimal Detection in Spinodal Systems
Explores optimal detection in spinodal systems, discussing stability analysis and phase transitions.
Bernoulli convolutions: The dimension of Bernoulli convolutions
Explores the dimension of Bernoulli convolutions, discussing fair tosses and polynomial roots.
Renormalization & Scaling
Explores renormalization, scaling, critical points, exponents, and phase transitions in conformal field theory and quantum gravity.
Osmotic Pressure: Electrochemical Potential
Explores osmotic pressure and electrochemical potential, highlighting their calculation and significance in electrolyte behavior.
Training for Experts in Digital Education
Emphasizes selecting images to evoke positive emotions and clarify training content in digital education.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.