This lecture introduces linear applications, focusing on definitions, properties, and examples. The instructor explains the canonical basis, injectivity, surjectivity, and how to find the matrix associated with a linear map.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Consectetur cupidatat ad eu proident ad Lorem sint. Incididunt aliqua id excepteur ipsum proident proident culpa Lorem sint enim amet irure dolore enim. Pariatur qui incididunt proident voluptate cupidatat sit.
Enim adipisicing officia commodo ad. Amet cillum consequat esse ut amet quis sunt minim nisi sunt. Anim sit sit ut proident eiusmod est proident ex laboris nisi. Eiusmod sit nulla dolor esse ullamco esse dolor ullamco consequat aliquip dolore ea. Culpa esse adipisicing deserunt culpa qui elit consectetur minim eu deserunt irure occaecat veniam ea. Magna elit sunt mollit ipsum fugiat quis aliqua elit cillum laborum do ad nisi eu. Non dolore et duis Lorem eiusmod anim aliquip.
Explores the definition and properties of linear applications, focusing on injectivity, surjectivity, kernel, and image, with a specific emphasis on matrices.
Delves into the bijection between linear applications and matrices, exploring linearity, injectivity, surjectivity, and the consequences of this relationship.