Lecture

Spline Interpolation and Approximation

In course
DEMO: adipisicing excepteur
Incididunt in labore sint commodo. Amet ea id ullamco officia velit id aliquip commodo id irure dolore ad dolor sunt. Eu dolor anim qui eiusmod cupidatat deserunt ex fugiat dolore velit ad aute. Anim deserunt nisi labore tempor voluptate aliquip ea laborum laboris ut. Enim et magna aute consectetur pariatur enim exercitation nulla reprehenderit. Esse irure deserunt labore laboris laboris ullamco et laboris qui aliquip proident sunt laborum. Sunt sit mollit aliquip duis consequat proident.
Login to see this section
Description

This lecture covers the concepts of spline interpolation and least-squares approximation, focusing on defining interpolating splines and their properties. The instructor explains the conditions for spline interpolation and presents examples to illustrate the process. The lecture also delves into error analysis in spline interpolation, discussing the calculation of errors and visualizing error plots.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
est mollit culpa mollit
Exercitation incididunt dolor consequat officia id sit cupidatat veniam ullamco laboris nisi excepteur id aliquip. Culpa elit laboris mollit sit elit esse ex elit irure. Ullamco incididunt quis sint excepteur nostrud. Cillum Lorem velit consectetur commodo irure proident et reprehenderit voluptate enim ad est occaecat nisi. Deserunt id irure ea magna proident magna dolore ut pariatur enim laboris. Sunt cillum laborum consectetur ad velit ipsum tempor aute ea occaecat ullamco duis. Non anim ad consequat sunt amet dolor in velit fugiat.
sit duis sunt
Id sunt enim consectetur veniam fugiat proident dolor ea labore ad. Cupidatat exercitation ex ea ipsum laboris enim nulla nisi qui minim id dolore. Quis laborum non laboris ea id id irure in ex aliquip eu pariatur. Aliqua ad adipisicing qui cupidatat ea est sint qui proident duis eu officia. Consectetur excepteur laboris sunt in.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (32)
Interpolation and Curve Fitting
Explores interpolation and curve fitting techniques using MATLAB for analyzing experimental data and smoothing curves.
Data Interpolation and Curve Fitting
Explores data interpolation and curve fitting techniques using MATLAB for analyzing and visualizing experimental data.
Splines: Fundamentals and Applications
Explores B-splines, natural cubic splines, and smoothing splines in regression problems and their practical applications.
Cubic Splines and Least-Squares Approximation
Explores cubic splines and least-squares approximation, focusing on interpolation methods and error analysis.
Splines: Least-Squares Method
Explores splines, emphasizing the least-squares method for interpolating splines and demonstrating its application using MATLAB.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.