**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Traveling Salesman Problem: Resolution Algorithms

Description

This lecture covers the Traveling Salesman Problem, where a closed path passing once through a set of cities must be found. The instructor explains the 'Euclidean' version and presents resolution algorithms, including testing all possible paths and heuristic approaches. The lecture also discusses the minimum spanning tree concept and the use of shortcuts to optimize the path. An interesting example involving a unicellular organism capable of problem-solving is presented.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

In MOOCs (2)

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Information, Calcul, Communication: Introduction à la pensée informatique

Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

CS-119(a): Information, Computation, Communication

D'une part, le cours aborde: (1) la notion d'algorithme et de représentation de l'information, (2) l'échantillonnage d'un signal et la compression de données et (3) des aspects
liés aux systèmes: ordi

Instructors (3)

Related concepts (18)

Minimum spanning tree

A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible. More generally, any edge-weighted undirected graph (not necessarily connected) has a minimum spanning forest, which is a union of the minimum spanning trees for its connected components.

Euclidean minimum spanning tree

A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.

Spanning tree

In the mathematical field of graph theory, a spanning tree T of an undirected graph G is a subgraph that is a tree which includes all of the vertices of G. In general, a graph may have several spanning trees, but a graph that is not connected will not contain a spanning tree (see about spanning forests below). If all of the edges of G are also edges of a spanning tree T of G, then G is a tree and is identical to T (that is, a tree has a unique spanning tree and it is itself).

Mathematical optimization

Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries.

Combinatorial optimization

Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, where the set of feasible solutions is discrete or can be reduced to a discrete set. Typical combinatorial optimization problems are the travelling salesman problem ("TSP"), the minimum spanning tree problem ("MST"), and the knapsack problem. In many such problems, such as the ones previously mentioned, exhaustive search is not tractable, and so specialized algorithms that quickly rule out large parts of the search space or approximation algorithms must be resorted to instead.