Explores perception in deep learning for autonomous vehicles, covering image classification, optimization methods, and the role of representation in machine learning.
Explores the evolution of CNNs in image processing, covering classical and deep neural networks, training algorithms, backpropagation, non-linear steps, loss functions, and software frameworks.
Covers the fundamentals of multilayer neural networks and deep learning, including back-propagation and network architectures like LeNet, AlexNet, and VGG-16.