Lecture

Generalized Linear Models

In course
DEMO: ea culpa
Fugiat incididunt deserunt id labore do dolor enim aliquip duis Lorem. Nulla ad esse cupidatat deserunt ex anim sit non. Et veniam velit eu elit enim. Consequat aliquip fugiat occaecat eiusmod esse reprehenderit eu. Irure consectetur magna pariatur sunt minim pariatur incididunt. Ex nulla commodo culpa excepteur dolore id consequat do. Voluptate id cupidatat laboris officia.
Login to see this section
Description

This lecture covers the concept of Generalized Linear Models, including the assumptions, statistical properties, and practical applications. It delves into various topics such as high-dimensional statistics, Bayesian methods, compressed sensing, and perception. The instructor discusses the challenges of working with noisy data and the importance of understanding the linearized models in different contexts.

Instructors (2)
consectetur consequat quis qui
Eu ex dolor cillum nostrud elit laborum quis eu quis aliquip et proident. Proident anim ex qui consectetur Lorem ut in quis ipsum ex deserunt. Mollit anim qui duis incididunt nostrud ipsum nulla culpa sint enim. Adipisicing do adipisicing voluptate id deserunt enim aute est Lorem dolore occaecat.
ad proident
Tempor ullamco nostrud exercitation est laborum ullamco adipisicing Lorem incididunt commodo ullamco. Qui voluptate eu amet sunt et laborum deserunt elit veniam. Est officia exercitation ullamco nisi id sunt laboris sunt quis magna velit quis id ad. Proident eiusmod quis pariatur ad excepteur Lorem proident dolore nostrud deserunt et. Dolore cillum veniam consectetur eiusmod ut laboris ad in.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.