**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Preliminaries in Measure Theory

Description

This lecture covers the preliminaries in measure theory, including concepts such as loc comp, separable, complete metric space, continuous functions, and compactly supported functions. The instructor discusses the properties of compact sets, convergence, and the notion of tightness in the context of measure theory.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

MATH-476: Optimal transport

The first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel

Related concepts (72)

Continuous functions on a compact Hausdorff space

In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by is a vector space with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined by the uniform norm. The uniform norm defines the topology of uniform convergence of functions on The space is a Banach algebra with respect to this norm.

Mathematical proof

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation".

Proof theory

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

Compact space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact.

Proof (truth)

A proof is sufficient evidence or a sufficient argument for the truth of a proposition. The concept applies in a variety of disciplines, with both the nature of the evidence or justification and the criteria for sufficiency being area-dependent. In the area of oral and written communication such as conversation, dialog, rhetoric, etc., a proof is a persuasive perlocutionary speech act, which demonstrates the truth of a proposition.

Related lectures (83)

Harmonic Forms and Riemann SurfacesMATH-680: Monstrous moonshine

Explores harmonic forms on Riemann surfaces, covering uniqueness of solutions and the Riemann bilinear identity.

Open Mapping TheoremMATH-410: Riemann surfaces

Explains the Open Mapping Theorem for holomorphic maps between Riemann surfaces.

Harmonic Forms: Main TheoremMATH-410: Riemann surfaces

Explores harmonic forms on Riemann surfaces and the uniqueness of solutions to harmonic equations.

Differential Forms IntegrationMATH-410: Riemann surfaces

Covers the integration of differential forms on smooth manifolds, including the concepts of closed and exact forms.

Distributions and DerivativesMATH-502: Distribution and interpolation spaces

Covers distributions, derivatives, convergence, and continuity criteria in function spaces.