**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Ruelle resonances for geodesic flow on noncompact manifolds

Description

This lecture covers the concept of Ruelle resonances for geodesic flow on noncompact manifolds, exploring the intricate mathematical details behind the topic, including the analysis of various formulas and equations extracted from the lecture slides.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (85)

Geodesic

In geometry, a geodesic (ˌdʒiː.əˈdɛsɪk,*-oʊ-,*-ˈdiːsɪk,_-zɪk) is a curve representing in some sense the shortest path (arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. It is a generalization of the notion of a "straight line". The noun geodesic and the adjective geodetic come from geodesy, the science of measuring the size and shape of Earth, though many of the underlying principles can be applied to any ellipsoidal geometry.

Hyperkähler manifold

In differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds. Hyperkähler manifolds were defined by Eugenio Calabi in 1979. Equivalently, a hyperkähler manifold is a Riemannian manifold of dimension whose holonomy group is contained in the compact symplectic group Sp(n).

Kähler manifold

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil.

Measure (mathematics)

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge.

Outer measure

In the mathematical field of measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. The theory of outer measures was first introduced by Constantin Carathéodory to provide an abstract basis for the theory of measurable sets and countably additive measures.

Related lectures (90)

Effective Field Theory: Testing Weak Interactions

Explores effective field theory for testing weak interactions and parity violation through forward-backward asymmetry.

Quantum Computation Delegation

Explores secure delegation of quantum computation tasks to external servers while ensuring data privacy and integrity.

Dynamical Approaches to Spectral Theory of Operators

Covers dynamical approaches to the spectral theory of operators and solutions of differential equations.

Nonlocal Games

Explores nonlocal games using quantum mechanics to achieve unexplainable correlations.

Introduction to Quantum Chaos

Covers the introduction to Quantum Chaos, classical chaos, sensitivity to initial conditions, ergodicity, and Lyapunov exponents.