**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Proofs: Direct and Indirect Methods

Description

This lecture covers examples of direct and indirect proofs, including theorems on even and odd integers, the sum of rational numbers, and proof by contraposition. It also explores proof by contradiction and cases, with examples illustrating these methods.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

Related lectures (266)

Related concepts (59)

Proofs: Logic, Mathematics & Algorithms

Explores proof concepts, techniques, and applications in logic, mathematics, and algorithms.

Proofs and Logic: Introduction

Introduces logic, proofs, sets, functions, and algorithms in mathematics and computer science.

Elementary Algebra: Numeric Sets

Explores elementary algebra concepts related to numeric sets and prime numbers, including unique factorization and properties.

Logic and Sets

Introduces logic, sets, and their operations, including subsets, Cartesian product, and set equivalence.

Harmonic Forms and Riemann Surfaces

Explores harmonic forms on Riemann surfaces, covering uniqueness of solutions and the Riemann bilinear identity.

Proof by contradiction

In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.

Mathematical proof

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation".

Proof by exhaustion

Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. This is a method of direct proof. A proof by exhaustion typically contains two stages: A proof that the set of cases is exhaustive; i.e.

Proof (truth)

A proof is sufficient evidence or a sufficient argument for the truth of a proposition. The concept applies in a variety of disciplines, with both the nature of the evidence or justification and the criteria for sufficiency being area-dependent. In the area of oral and written communication such as conversation, dialog, rhetoric, etc., a proof is a persuasive perlocutionary speech act, which demonstrates the truth of a proposition.

Proof theory

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.