**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Recursive Algorithms: Factorial, Exponentiation, Search

Description

This lecture covers the concept of recursive algorithms, focusing on factorial computation, exponentiation, and search algorithms. It explains the recursive approach to solving problems by reducing them to smaller instances until reaching a base case.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Related concepts (29)

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a

In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search algorithm that finds the position of a target value within a sorted array. Binary search compares the target value to the middle element of the array. If they are not equal, the half in which the target cannot lie is eliminated and the search continues on the remaining half, again taking the middle element to compare to the target value, and repeating this until the target value is found.

In computer science, a search algorithm is an algorithm designed to solve a search problem. Search algorithms work to retrieve information stored within particular data structure, or calculated in the search space of a problem domain, with either discrete or continuous values. Although search engines use search algorithms, they belong to the study of information retrieval, not algorithmics. The appropriate search algorithm to use often depends on the data structure being searched, and may also include prior knowledge about the data.

In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. A linear search runs in at worst linear time and makes at most n comparisons, where n is the length of the list. If each element is equally likely to be searched, then linear search has an average case of n+1/2 comparisons, but the average case can be affected if the search probabilities for each element vary.

In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree. The time complexity of operations on the binary search tree is directly proportional to the height of the tree. Binary search trees allow binary search for fast lookup, addition, and removal of data items.

In computer science, a self-balancing binary search tree (BST) is any node-based binary search tree that automatically keeps its height (maximal number of levels below the root) small in the face of arbitrary item insertions and deletions. These operations when designed for a self-balancing binary search tree, contain precautionary measures against boundlessly increasing tree height, so that these abstract data structures receive the attribute "self-balancing".