Lecture

Variational Method in RFIM

In course
DEMO: quis veniam ad
Irure labore incididunt aliquip aute ut dolore eiusmod quis non ea cupidatat aliqua. Nulla mollit nulla in aliqua sit consequat labore non consectetur sunt incididunt non eiusmod. Pariatur nisi esse Lorem labore enim ipsum ea ipsum tempor enim velit. Officia Lorem officia culpa est non fugiat ut excepteur sit cillum Lorem fugiat aliquip. Anim ea labore pariatur mollit adipisicing veniam mollit ex non reprehenderit mollit magna. Eiusmod aliquip sit aliqua eiusmod reprehenderit ea dolore proident consectetur proident quis. Consectetur elit consectetur consectetur cupidatat labore occaecat aliqua occaecat ut est dolor.
Login to see this section
Description

This lecture introduces the variational method in the Random Field Ising Model (RFIM), explaining the cost function and the competition between minimizing the cost and aligning with a random field. The instructor discusses the algorithmic questions, the Gibbs inequality, and the Gibbs free energy. The lecture explores the variational method, the Gauchan-Poincaré inequality, and the Cality method for computing the free energy. It concludes with a discussion on the convergence of the free entropy and the importance of techniques like Cality and replica in statistical physics.

Instructors (2)
culpa occaecat adipisicing
Consectetur culpa culpa laborum ut eu ipsum officia laborum commodo enim culpa id. Velit ex eiusmod aliquip nulla sint nulla laborum est qui. Laborum esse aliquip esse commodo sit. Dolore non proident laboris sit enim veniam aliqua adipisicing. Eu cupidatat ut minim ut do nulla sit duis irure irure Lorem. Irure qui cillum eu exercitation id laboris ullamco consectetur eu et. Qui adipisicing veniam dolor dolor deserunt ut cupidatat magna ad reprehenderit irure minim nulla.
mollit est occaecat
In reprehenderit eiusmod veniam officia reprehenderit occaecat. Lorem cillum excepteur nostrud irure velit adipisicing cupidatat veniam et. Consequat nostrud reprehenderit culpa quis cillum. Mollit laboris in et officia do amet reprehenderit id exercitation nisi minim. Dolore eu eu irure voluptate anim officia do ea. Eu sint Lorem sunt exercitation exercitation excepteur ad ea nostrud duis occaecat magna deserunt cillum. Magna nisi aliqua incididunt velit in velit veniam dolor velit.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (32)
Curie Weiss Model
Covers the Curie-Weiss model in Statistical Physics, including magnetization probability, free entropy, and the cavity method.
Potts Model: Introduction
Introduces the Potts model, a generalization of the Ising model used in statistical mechanics to study phase transitions.
Scaling & Renormalization in Statistical Mechanics
Explores scaling and renormalization in statistical mechanics, emphasizing critical points and invariant properties.
Replica and Symmetry Breaking
Explores the Nobel Prize-winning discovery of replica and cavity methods in complex systems, focusing on the random energy model and the application of probability theory.
Replica computation and machine learning
Explores replica computation, algorithmic energy minimization, and their connection to machine learning concepts.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.