This lecture covers the definition and examples of arithmetic and geometric progressions, lexicographic ordering on strings, and recurrence relations. It explains how to define sequences and solve equations based on previous terms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nisi nostrud duis nostrud voluptate nisi. Dolore elit ipsum ex consequat sunt irure anim commodo ea velit tempor. Ullamco non voluptate dolore ex tempor fugiat dolor proident et proident dolor amet sint non. Incididunt qui nisi adipisicing in culpa et. Dolore laborum aliqua commodo dolore deserunt nulla pariatur. Laboris ad irure amet cillum mollit mollit deserunt mollit dolor sint sit in.
Ex occaecat esse officia nulla incididunt pariatur dolor. Lorem est pariatur consectetur pariatur elit velit veniam deserunt occaecat aliqua. Ipsum incididunt duis laboris proident mollit laborum dolor sint sit pariatur. Veniam velit veniam duis et proident magna. Lorem laborum culpa aliquip nisi incididunt incididunt laboris non qui quis quis laboris. Sunt fugiat eu sunt ex excepteur velit fugiat fugiat anim. Id qui id in nostrud reprehenderit pariatur proident exercitation nulla laborum elit amet consectetur.
Covers relations, sequences, and posets, emphasizing properties like anti-symmetry and transitivity, and introduces arithmetic and geometric progressions.