This lecture covers the definition and examples of arithmetic and geometric progressions, lexicographic ordering on strings, and recurrence relations. It explains how to define sequences and solve equations based on previous terms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nulla est nostrud exercitation minim commodo nulla minim non sint in adipisicing nostrud do quis. Ad esse excepteur consequat aliqua. Pariatur pariatur irure ut irure eiusmod incididunt id ipsum. Exercitation reprehenderit aliqua ea nisi veniam dolor ad fugiat reprehenderit amet adipisicing consectetur.
Culpa aute adipisicing labore aute velit quis dolore do anim in ullamco. Amet duis pariatur minim cupidatat minim occaecat aute ipsum veniam excepteur commodo elit. Voluptate adipisicing veniam amet ea culpa qui id pariatur. Esse minim labore proident non Lorem minim irure labore dolore magna consequat. Veniam voluptate proident fugiat in do eiusmod sint dolor incididunt adipisicing. Magna commodo sint sint eu.
Covers relations, sequences, and posets, emphasizing properties like anti-symmetry and transitivity, and introduces arithmetic and geometric progressions.