**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# States of Composite Systems

Description

This lecture covers the states of composite systems in Hilbert space, describing the operators and observables of two systems A and B. It delves into tensor products, eigenvalues, and partial measurements, illustrating the concept with examples.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructors (2)

In course

PHYS-313: Quantum physics I

The objective of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.

Related concepts (122)

Unbounded operator

In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases. The term "unbounded operator" can be misleading, since "unbounded" should sometimes be understood as "not necessarily bounded"; "operator" should be understood as "linear operator" (as in the case of "bounded operator"); the domain of the operator is a linear subspace, not necessarily the whole space; this linear subspace is not necessarily closed; often (but not always) it is assumed to be dense; in the special case of a bounded operator, still, the domain is usually assumed to be the whole space.

Rigged Hilbert space

In mathematics, a rigged Hilbert space (Gelfand triple, nested Hilbert space, equipped Hilbert space) is a construction designed to link the distribution and square-integrable aspects of functional analysis. Such spaces were introduced to study spectral theory in the broad sense. They bring together the 'bound state' (eigenvector) and 'continuous spectrum', in one place. A function such as is an eigenfunction of the differential operator on the real line R, but isn't square-integrable for the usual Borel measure on R.

Reproducing kernel Hilbert space

In functional analysis (a branch of mathematics), a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Roughly speaking, this means that if two functions and in the RKHS are close in norm, i.e., is small, then and are also pointwise close, i.e., is small for all . The converse does not need to be true. Informally, this can be shown by looking at the supremum norm: the sequence of functions converges pointwise, but does not converge uniformly i.

Self-adjoint

In mathematics, and more specifically in abstract algebra, an element x of a *-algebra is self-adjoint if . A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold. A collection C of elements of a star-algebra is self-adjoint if it is closed under the involution operation. For example, if then since in a star-algebra, the set {x,y} is a self-adjoint set even though x and y need not be self-adjoint elements. In functional analysis, a linear operator on a Hilbert space is called self-adjoint if it is equal to its own adjoint A^∗.

Tensor product

In mathematics, the tensor product of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map that maps a pair to an element of denoted An element of the form is called the tensor product of v and w. An element of is a tensor, and the tensor product of two vectors is sometimes called an elementary tensor or a decomposable tensor. The elementary tensors span in the sense that every element of is a sum of elementary tensors.

Related lectures (205)

Quantum Entanglement

Delves into quantum entanglement, exploring entangled particles' state, evolution, and measurement.

Measurement of Observable Eigenvalues

Covers the measurement of observable eigenvalues and the importance of complete orthonormal sets.

Quantum Eigenfunctions

Covers quantum eigenfunctions and the importance of A and B commuting for the same set of eigenfunctions.

Quantum Mechanics: Observables and Eigenvalues

Explores quantum mechanics through observables, eigenvalues, and operators.

Postulates of Quantum Mechanics

Explains the postulates of Quantum Mechanics, focusing on self-adjoint operators and mathematical notation.