Introduces the fundamentals of regression in machine learning, covering course logistics, key concepts, and the importance of loss functions in model evaluation.
Covers linear models, including regression, derivatives, gradients, hyperplanes, and classification transition, with a focus on minimizing risk and evaluation metrics.
Covers a review of machine learning concepts, including supervised learning, classification vs regression, linear models, kernel functions, support vector machines, dimensionality reduction, deep generative models, and cross-validation.