Skip to main content
Graph
Search
fr
en
Login
Search
All
Categories
Concepts
Courses
Lectures
MOOCs
People
Practice
Publications
Startups
Units
Show all results for
Home
Lecture
Sampling Distributions: Estimation
Graph Chatbot
Related lectures (32)
Previous
Page 1 of 4
Next
Statistical Models and Parameter Estimation
Explores statistical models, parameter estimation, and sampling distributions in probability and statistics.
Sampling Distributions: Theory and Applications
Explores sampling distributions, estimators' properties, and statistical measures for data science applications.
Sampling Distributions: Estimators and Variance
Covers estimation of parameters, MSE, Fisher information, and the Rao-Blackwell Theorem.
Intro to Quantum Sensing: Parameter Estimation and Fisher Information
Introduces Fisher Information for parameter estimation based on collected data.
Estimation and Confidence Intervals
Explores bias, variance, and confidence intervals in parameter estimation using examples and distributions.
Basic Principles of Point Estimation
Explores the Method of Moments, Bias-Variance tradeoff, Consistency, Plug-In Principle, and Likelihood Principle in point estimation.
Confidence Intervals: Definition and Estimation
Explains confidence intervals, parameter estimation methods, and the central limit theorem in statistical inference.
Estimators and Confidence Intervals
Explores bias, variance, unbiased estimators, and confidence intervals in statistical estimation.
Point Estimation in Statistics
Explores point estimation in statistics, discussing bias, variance, mean squared error, and consistency of estimators.
Bias, Variance, Consistency, EMV
Covers bias, variance, mean squared error, consistency, and maximum likelihood estimation in the Poisson model.