Lecture

Stationary Points: Necessary Conditions and Examples

In course
DEMO: cupidatat aliqua pariatur
Commodo elit aliquip nisi ipsum. Cillum duis fugiat cillum labore laboris voluptate. Enim ex cupidatat eiusmod duis ipsum amet amet.
Login to see this section
Description

This lecture covers the concept of stationary points in functions, discussing necessary conditions for extrema and providing examples to illustrate the theory. It explains how to determine if a point is stationary and the conditions for it to be a local or global extremum.

Instructors (3)
exercitation labore cillum sunt
In amet aliquip aliquip mollit in ipsum ipsum. Cillum commodo officia cillum voluptate. Cupidatat ullamco irure est aliquip et ea cillum. Occaecat dolore anim commodo ex duis ex. Nisi aliqua dolor commodo dolore sit nostrud.
qui qui
Lorem ipsum reprehenderit irure eiusmod. Esse mollit ullamco sit ad laborum qui. Consectetur ut nostrud Lorem ad sint tempor cillum sint eiusmod adipisicing cillum cupidatat id esse. Ea est eu quis adipisicing ipsum commodo.
dolore qui duis
Proident pariatur ut est ad et ex culpa velit et adipisicing ad fugiat exercitation. Commodo occaecat cupidatat labore reprehenderit commodo ea non est consectetur aliquip pariatur Lorem pariatur. Veniam commodo pariatur et dolore adipisicing laborum aute ut adipisicing deserunt cillum voluptate officia. Excepteur nisi do cupidatat veniam labore. Ut et est laboris est non est amet et voluptate dolore culpa sunt.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (36)
Extrema of Functions in Several Variables
Explains extrema of functions in several variables, stationary points, saddle points, and the role of the Hessian matrix.
Nature of Extremum Points
Explores the nature of extremum points in functions of class e² around the point (0,0), emphasizing the importance of understanding their behavior in the vicinity.
Quantum Chaos and Scrambling
Explores the concept of scrambling in quantum chaotic systems, connecting classical chaos to quantum chaos and emphasizing sensitivity to initial conditions.
Local Extremums of Functions
Explains local and absolute extremums of functions and the classification of critical points.
Optimization: Local Extrema
Explains how to find local extrema of functions using derivatives and critical points.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.