Supervised Learning OverviewCovers CNNs, RNNs, SVMs, and supervised learning methods, emphasizing the importance of tuning regularization and making informed decisions in machine learning.
Unsupervised Behavior ClusteringExplores unsupervised behavior clustering and dimensionality reduction techniques, covering algorithms like K-Means, DBSCAN, and Gaussian Mixture Model.
Clustering: Theory and PracticeCovers the theory and practice of clustering algorithms, including PCA, K-means, Fisher LDA, spectral clustering, and dimensionality reduction.
Clustering & Density EstimationCovers dimensionality reduction, clustering, and density estimation techniques, including PCA, K-means, GMM, and Mean Shift.