**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Non-linear Systems in 2D: Predator-Prey Models

Description

This lecture covers the analysis of non-linear systems in 2D, focusing on predator-prey models. It discusses the dynamics of two interacting populations, highlighting phenomena like temporal oscillations. The lecture delves into the interpretation of logistic growth models and the stability of fixed points in the phase portraits.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructors (2)

Related concepts (96)

Related lectures (3)

BIO-341: Dynamical systems in biology

Ce cours introduit les systèmes dynamiques pour modéliser des réseaux biologiques simples. L'analyse qualitative de modèles dynamiques non-linéaires est développée de pair avec des simulations numériq

,

The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often referred to as an archetypal example of how complex, chaotic behaviour can arise from very simple nonlinear dynamical equations. The map was popularized in a 1976 paper by the biologist Robert May, in part as a discrete-time demographic model analogous to the logistic equation written down by Pierre François Verhulst. Mathematically, the logistic map is written where xn is a number between zero and one, which represents the ratio of existing population to the maximum possible population.

Exponential growth is a process that increases quantity over time. It occurs when the instantaneous rate of change (that is, the derivative) of a quantity with respect to time is proportional to the quantity itself. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth).

Various types of stability may be discussed for the solutions of differential equations or difference equations describing dynamical systems. The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov. In simple terms, if the solutions that start out near an equilibrium point stay near forever, then is Lyapunov stable. More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis).

In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables). It is a two-dimensional case of the general n-dimensional phase space. The phase plane method refers to graphically determining the existence of limit cycles in the solutions of the differential equation.

Population dynamics is the type of mathematics used to model and study the size and age composition of populations as dynamical systems. Population dynamics has traditionally been the dominant branch of mathematical biology, which has a history of more than 220 years, although over the last century the scope of mathematical biology has greatly expanded. The beginning of population dynamics is widely regarded as the work of Malthus, formulated as the Malthusian growth model.

Explores non-Cartesian coordinates, dynamics of a point particle, and motion in three dimensions.

Explores scaling and renormalization in statistical mechanics, emphasizing critical points and invariant properties.

Covers the introduction to Quantum Chaos, classical chaos, sensitivity to initial conditions, ergodicity, and Lyapunov exponents.