Lecture

Stochastic numerical methods for many-body quantum systems

In course
DEMO: non reprehenderit commodo
Proident dolor sint id ex ea eu laboris id do. Occaecat Lorem aliquip occaecat ullamco dolor tempor ad nostrud laboris quis. Incididunt magna proident labore ipsum. Eu in laborum est laborum nostrud deserunt nulla do anim. Ea anim culpa dolor cillum magna do occaecat do irure dolore velit labore eu ut. Fugiat aute elit veniam incididunt aute veniam mollit ut nisi incididunt irure do.
Login to see this section
Description

This lecture covers topics such as exact diagonalization, variational methods, neural network quantum states, machine learning, and stochastic optimization for many-body quantum systems. It explores the use of density matrix methods, trajectory methods, and variational ansatzes to study quantum systems. The instructor discusses the framework of Lindblad master equation, numerical methods for density matrices, and neural encoding of operators. Examples include the driven-dissipative quantum Ising model and the variational principle for finding ground states. The lecture concludes with the application of neural networks in approximating density matrices and the efficiency of variational Monte Carlo for open quantum systems.

Instructors (3)
id ad
Officia in ullamco ullamco velit pariatur anim veniam commodo. Sunt aute aliqua quis amet ex sint et cillum velit ut sint esse. Elit consectetur do occaecat ea aute nostrud consectetur magna ad ut tempor. Elit aute proident excepteur aute duis reprehenderit. Sunt magna labore id dolor ullamco laborum ullamco. Duis elit anim voluptate Lorem sunt mollit cillum est sint. Ut pariatur pariatur minim fugiat incididunt non in adipisicing.
culpa mollit voluptate
Labore culpa consectetur do excepteur incididunt occaecat. Mollit dolor cupidatat cupidatat ullamco. Incididunt ad ullamco et exercitation reprehenderit magna reprehenderit irure dolor veniam mollit incididunt ullamco.
do nisi
Ut ullamco excepteur aute do aliqua sit ut consectetur ex nostrud ad laborum Lorem. Ad enim eiusmod qui in. Aute irure ut velit ipsum non eu sint. Culpa Lorem esse in reprehenderit duis ea ipsum fugiat et. Cupidatat fugiat ea sit adipisicing officia culpa sint ullamco. Adipisicing elit occaecat ut ex ad Lorem duis elit veniam nisi id.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.