Explores t-tests, confidence intervals, ANOVA, and hypothesis testing in statistics, emphasizing the importance of avoiding false discoveries and understanding the logic behind statistical tests.
Delves into hypothesis testing, covering test statistics, critical regions, power functions, p-values, multiple testing, and non-parametric statistics.
Explores constructing confidence regions, inverting hypothesis tests, and the pivotal method, emphasizing the importance of likelihood methods in statistical inference.
Explores the challenges of multiple testing in genomic data analysis, covering error rate control, adjusted p-values, permutation tests, and pitfalls in hypothesis testing.