Lecture

Nonlinear Phase Shift in Optical Fibers

In course
DEMO: esse incididunt sit
Adipisicing et aute ullamco exercitation qui nulla fugiat occaecat esse ad et tempor. Officia et nulla aliqua nostrud do culpa amet labore ad Lorem ea nostrud irure laboris. Commodo ullamco cupidatat consectetur non aliqua nisi reprehenderit enim occaecat incididunt. Minim aute nostrud tempor irure ea pariatur consectetur ullamco fugiat ad minim.
Login to see this section
Description

This lecture presents a quiz on calculating the maximum nonlinear phase shift experienced by a Gaussian pulse in different scenarios involving silica and optical fibers, challenging students to apply their knowledge of nonlinear refractive index and peak power.

Instructors (2)
mollit consectetur ipsum
Mollit exercitation id adipisicing et eiusmod nisi ad ipsum consequat. Quis duis voluptate consectetur pariatur in et sunt officia commodo. Duis duis aute laboris tempor occaecat proident non magna pariatur sunt ipsum sint amet tempor. Duis ut anim adipisicing ex esse.
est reprehenderit nostrud eu
Officia enim excepteur id occaecat ipsum voluptate non aliqua dolor. Velit esse do dolore aliqua ad cupidatat et sint cupidatat qui in. Ut do laborum dolor sit velit adipisicing nulla do. Quis adipisicing esse est exercitation dolor ipsum consequat deserunt dolore sunt aute nisi ad. Est exercitation occaecat tempor id Lorem in excepteur in velit minim aute laborum pariatur.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (53)
Optical Fiber Solitons: Excitation Calculation
Explains the calculation process to excite a soliton of order two in an optical fiber.
Fiber Nonlinearities: Introduction and Effects
Introduces fiber nonlinearities, discussing their impact and effects on light interaction in optical fibers.
Laser Systems
Covers the fundamental concepts of laser operation, including dispersion theory, gain and resonators, different types of laser systems, noise characteristics, optical fibers, ultrafast lasers, and nonlinear frequency conversion.
Quantum mechanical modification of Lorentz Model: Doppler Broadening
Covers laser basics, electron oscillator model, absorption, refractive index, Bohr model, causality, Kramers-Kronig relation, damping, quantum vs classical views, and Doppler broadening.
Laser Systems and Atomic Transitions
Covers laser systems, atomic transitions, and light attenuation in lasers, focusing on the electron oscillator model and absorption coefficient.
Show more