**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Proof of Sylow Subgroup Properties

Description

This lecture demonstrates the properties of the p-subgroups of Sylow in a group, exploring various actions by conjugation and the class equation, leading to the proof of key properties.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

MATH-211: Group Theory

Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo

Related concepts (39)

Presentation of a group

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R.

Symmetric group

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are ( factorial) such permutation operations, the order (number of elements) of the symmetric group is .

Computational group theory

In mathematics, computational group theory is the study of groups by means of computers. It is concerned with designing and analysing algorithms and data structures to compute information about groups. The subject has attracted interest because for many interesting groups (including most of the sporadic groups) it is impractical to perform calculations by hand.

Group theory

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

Sylow theorems

In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups. For a prime number , a Sylow p-subgroup (sometimes p-Sylow subgroup) of a group is a maximal -subgroup of , i.

Related lectures (119)

Existence of Sylow Subgroups: Proof by RecurrenceMATH-211: Group Theory

Demonstrates the existence of p-Sylow subgroups in any finite group using induction and the abelian case.

Finite Abelian Groups: Classification TheoremMATH-211: Group Theory

Presents the classification of finite abelian groups as products of cyclic groups, a fundamental result in various branches of mathematics.

Bar Construction: Homology Groups and Classifying SpaceMATH-506: Topology IV.b - cohomology rings

Covers the bar construction method, homology groups, classifying space, and the Hopf formula.

Categorical Perspective: Abelian GroupsMATH-211: Group Theory

Explores abelian groups from a categorical perspective, discussing the coproduct construction.

Fixed Points and Orbits Analysis: Group ActionsMATH-211: Group Theory

Explores the definition of orbits and fixed points of a G-object in any category, focusing on G-equivariant applications.