Introduces Natural Language Processing (NLP) and its applications, covering tokenization, machine learning, sentiment analysis, and Swiss NLP applications.
Explores the mathematics of language models, covering architecture design, pre-training, and fine-tuning, emphasizing the importance of pre-training and fine-tuning for various tasks.
Explores deep learning for NLP, covering word embeddings, context representations, learning techniques, and challenges like vanishing gradients and ethical considerations.