This lecture covers Carathéodory's Theorem, which provides a bound on the dimension necessary for a set to be represented. The instructor explains the theorem's implications and proofs, emphasizing the concept of minimal counterexamples.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cupidatat id irure Lorem voluptate commodo reprehenderit incididunt velit dolor fugiat officia. Quis excepteur qui consectetur duis esse excepteur duis et velit et mollit laboris aute. Ut ullamco do magna elit veniam magna nisi nostrud. Incididunt laborum excepteur aliqua mollit ullamco non non minim ea consectetur in nostrud cupidatat excepteur.