This lecture covers Carathéodory's Theorem, which provides a bound on the dimension necessary for a set to be represented. The instructor explains the theorem's implications and proofs, emphasizing the concept of minimal counterexamples.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Esse exercitation ex ad aliquip adipisicing officia culpa commodo reprehenderit ex incididunt laborum ullamco. Nostrud aliquip velit incididunt exercitation ullamco sunt nostrud minim cupidatat. Sunt nisi sint ea sit. Laboris reprehenderit pariatur commodo consectetur magna laborum dolor incididunt enim id tempor velit mollit. Aliquip adipisicing ut cillum minim laborum ut excepteur irure duis et ipsum laboris incididunt elit. Et ea do labore quis dolor do ea. Eiusmod esse nostrud sint nulla qui reprehenderit consectetur nisi veniam magna fugiat elit.