Lecture

Machine Learning for Atomic Scale Systems

In course
DEMO: eu laborum elit
Ut duis occaecat consectetur sit mollit ipsum adipisicing excepteur minim aliqua occaecat adipisicing. Non esse quis nostrud ad occaecat ea nisi ea exercitation sit. Eu cupidatat qui id nulla amet esse ea ea. Culpa irure reprehenderit occaecat veniam laboris aliqua reprehenderit consectetur officia velit occaecat cillum fugiat.
Login to see this section
Description

This lecture by the instructor provides an overview of applying machine learning to atomic scale systems. Starting with a historical introduction to atomistic modeling, the lecture delves into the transition from empirical to quantitative descriptions of matter. The instructor explains the challenges of modeling emergent physics from first principles and introduces the concept of using machine learning as a bridge to enhance accuracy in sampling atomic systems. The lecture covers the importance of symmetry in feature mapping, the construction of symmetric features for atomic structures, and the integration of rotations to create rotationally invariant descriptors. The instructor also discusses the use of linear regression models to approximate potential energy functions, highlighting the convergence of machine learning and physics-inspired approaches.

Instructors (7)
sunt cillum commodo est
Eiusmod ut et mollit ut fugiat dolore ullamco esse nostrud elit officia do. Non dolor enim consectetur labore Lorem exercitation. Adipisicing fugiat adipisicing sint eiusmod laborum. Reprehenderit aliquip exercitation laborum labore ea. Aliquip velit minim tempor magna excepteur enim. Nisi cillum incididunt officia veniam ut.
Lorem irure consectetur velit
Ad cillum tempor quis ex sit tempor excepteur fugiat ullamco nulla commodo. Nostrud proident fugiat irure est adipisicing anim veniam deserunt. Esse exercitation fugiat reprehenderit duis.
esse id ipsum eu
Labore et in velit qui ipsum anim ex tempor et pariatur consequat anim reprehenderit aliqua. Est est ex qui consectetur aute incididunt duis qui sunt quis. Consectetur eiusmod do quis nisi ut dolore irure ex. Excepteur incididunt magna excepteur irure sit incididunt reprehenderit voluptate dolor officia reprehenderit do adipisicing qui. Nulla quis commodo proident dolor laboris commodo nulla consequat proident veniam dolore ut qui. Laboris laborum quis voluptate occaecat eiusmod. Esse qui eiusmod proident est dolore nulla magna id.
magna commodo tempor aliqua
Fugiat incididunt magna id cillum commodo eiusmod. Fugiat veniam sunt laboris reprehenderit sit velit reprehenderit tempor occaecat aute pariatur. Velit irure amet sit elit. Laboris aliqua incididunt non nulla eu ut mollit. Non in qui veniam eu Lorem aute ex Lorem voluptate. Dolor velit nulla occaecat laborum. Minim mollit esse quis excepteur elit do proident anim elit labore non consequat.
non tempor do
Amet nulla incididunt ullamco eiusmod. Occaecat reprehenderit minim qui consequat qui aliqua reprehenderit minim elit magna nisi commodo. Ut reprehenderit irure dolore consequat aliqua adipisicing pariatur cillum proident deserunt consectetur occaecat incididunt deserunt. Occaecat sunt consectetur aute elit sunt qui velit consectetur ex deserunt. In voluptate minim quis culpa irure ipsum do exercitation fugiat veniam et in sit exercitation. Duis ut quis aliquip pariatur enim est elit id. Veniam nostrud eu anim aute do ex aliqua officia ut officia ut commodo deserunt qui.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (34)
Machine Learning in Molecular Dynamics
Explores the application of machine learning in molecular dynamics and materials, emphasizing the creation of meaningful features and the importance of generalizability.
Supervised Learning: Linear Regression
Covers supervised learning with a focus on linear regression, including topics like digit classification, spam detection, and wind speed prediction.
Linear Regression: BasicsMOOC: IoT Systems and Industrial Applications with Design Thinking
Covers the basics of linear regression, focusing on minimizing errors and predicting outputs.
Linear Regression: Statistical Inference and Regularization
Covers the probabilistic model for linear regression and the importance of regularization techniques.
Linear Regression: Basics and Applications
Covers the basics of linear regression, from training to real-world applications and multi-output scenarios.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.