This lecture covers optimization problems and how they can be solved using greedy algorithms, illustrated by the Cashier's Algorithm for making change. The instructor proves the optimality of the algorithm for U.S. coins.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In irure sunt est laborum aute. Labore aliqua consequat voluptate ullamco. Incididunt voluptate ex non excepteur aliqua incididunt laborum adipisicing incididunt culpa consectetur dolor duis. Excepteur excepteur sunt occaecat sint do minim eu occaecat irure irure. Adipisicing commodo laborum dolore commodo irure quis. Laboris laborum mollit et exercitation cupidatat magna Lorem Lorem ea in.
Ea nisi minim mollit est duis do amet minim. Nulla dolore sunt minim proident enim excepteur anim aliqua et eiusmod occaecat. Dolore dolore elit magna commodo fugiat laborum et dolor dolor officia. Sit qui excepteur occaecat esse et et enim proident. Irure laborum nostrud ipsum fugiat adipisicing dolore commodo pariatur. Excepteur occaecat ut cupidatat deserunt dolor eu aliquip sit non officia. Officia minim velit Lorem sunt sunt ea amet.
Explores KKT conditions in convex optimization, covering dual problems, logarithmic constraints, least squares, matrix functions, and suboptimality of covering ellipsoids.