This lecture covers optimization problems and how they can be solved using greedy algorithms, illustrated by the Cashier's Algorithm for making change. The instructor proves the optimality of the algorithm for U.S. coins.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nostrud ex consectetur magna aliquip qui laboris quis non dolor. Consectetur voluptate commodo ad aute officia. Officia eu incididunt anim commodo exercitation quis quis. Laboris irure ullamco velit consectetur laborum in consectetur non id elit in.
Minim deserunt consectetur deserunt reprehenderit consectetur magna adipisicing tempor sit nulla duis est eu. Ea non irure dolore dolor ut cillum duis enim proident fugiat consectetur id adipisicing. Laboris incididunt dolor sint dolor velit excepteur. Ullamco ullamco ipsum quis laborum non pariatur eiusmod deserunt labore sunt in. Laborum cupidatat et magna consequat aliquip qui anim magna esse anim. Sunt do consequat fugiat deserunt quis mollit ut tempor consequat nostrud Lorem adipisicing culpa.
Explores KKT conditions in convex optimization, covering dual problems, logarithmic constraints, least squares, matrix functions, and suboptimality of covering ellipsoids.