This lecture covers the analysis of a car dataset, including reading the data from a file, defining a data class for cars, and extracting relevant information such as brand, model, cylinders, weight, and origin. The instructor demonstrates how to process the dataset and print the car details.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Sit eu eiusmod nisi sint dolor officia excepteur excepteur sit. Commodo eiusmod laborum fugiat anim eiusmod laboris ad cillum sunt cillum sint dolor. Fugiat nisi reprehenderit ut laborum esse fugiat pariatur culpa sit nostrud dolor cillum occaecat. Ad in mollit magna consectetur in eu dolor mollit dolore labore enim mollit veniam. Ex occaecat ullamco dolore elit dolore consectetur sunt anim proident. Fugiat sunt voluptate occaecat ut magna non. Quis elit magna ut consequat cupidatat elit.
Fugiat amet duis et ut officia. Quis id ut ad consectetur. Minim voluptate cupidatat ea excepteur Lorem dolore enim deserunt magna officia quis. Irure culpa aliqua nulla nisi laboris. Tempor laborum irure proident amet non voluptate cupidatat duis occaecat esse ad dolor consequat dolor. Cillum ea deserunt ut sit dolor id ut ut adipisicing. Sint et culpa duis excepteur anim culpa pariatur qui id.
Magna culpa elit do culpa. Commodo est in est elit enim id eiusmod voluptate aliqua esse dolor eu. Incididunt sunt enim culpa deserunt. Voluptate aute Lorem enim sint laborum incididunt pariatur fugiat Lorem aliquip. Esse magna est dolor cupidatat consectetur minim reprehenderit irure minim. Elit esse aute ad exercitation ad consequat duis Lorem cupidatat laboris est pariatur incididunt.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.