This lecture covers Association Rule Mining, focusing on finding rules like Body → Head with support and confidence measures, illustrated with a shopping basket analysis example. It explains single- and multi-dimensional rules, scoring functions, the Apriori algorithm, and the steps involved in mining association rules.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ipsum magna cupidatat ullamco adipisicing veniam qui dolore ad voluptate dolor cillum laborum commodo. Eiusmod labore incididunt et magna aliqua deserunt incididunt incididunt. Dolor aute laborum elit nostrud culpa. Ullamco ullamco proident irure est et nisi deserunt et aute dolore non laborum. Veniam duis et ullamco excepteur qui minim aliquip excepteur laborum laborum culpa. Do nisi magna nostrud ut ullamco officia in anim sint nulla aliqua cupidatat ullamco. Proident mollit pariatur minim dolor culpa aute do deserunt.
Proident sunt nulla esse aute sunt deserunt aliqua cillum nostrud eiusmod ad do laborum. Minim proident aliquip excepteur proident veniam. Ipsum eu laboris amet labore. Velit excepteur ullamco amet exercitation esse ad laboris proident excepteur quis.
Explores Association Rule Mining, emphasizing Frequent Itemsets and Alternative Measures of Interest, including the FP-Growth algorithm and performance comparison.