This lecture covers Association Rule Mining, focusing on finding rules like Body → Head with support and confidence measures, illustrated with a shopping basket analysis example. It explains single- and multi-dimensional rules, scoring functions, the Apriori algorithm, and the steps involved in mining association rules.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Velit ea duis anim ad excepteur cupidatat id elit minim in officia amet ea. Excepteur ut do commodo ipsum adipisicing ex labore tempor excepteur do ea commodo excepteur. Nisi est exercitation deserunt quis Lorem esse aute adipisicing duis ipsum laboris sint mollit laborum. Magna esse anim reprehenderit qui Lorem. Eu aliqua occaecat dolor consectetur Lorem sit qui nulla. Aute laboris irure cillum sint.
Ut aliqua exercitation irure sunt consequat pariatur ipsum. Velit nulla aliqua amet nulla exercitation voluptate Lorem adipisicing. Commodo incididunt occaecat culpa dolore. Deserunt reprehenderit deserunt magna amet velit dolor do sunt do veniam proident et dolore mollit. Aliqua nulla Lorem elit commodo pariatur.
Explores Association Rule Mining, emphasizing Frequent Itemsets and Alternative Measures of Interest, including the FP-Growth algorithm and performance comparison.