This lecture covers the representation of integers using different bases, such as decimal, binary, octal, and hexadecimal. It explains unique expressions of integers in various forms and algorithms for base expansion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Occaecat culpa magna sit culpa sunt. Cupidatat consequat culpa et eiusmod labore cupidatat aliquip incididunt elit do sint nulla proident laborum. Quis id reprehenderit non amet dolor laborum. Minim labore adipisicing non deserunt irure tempor sint ad. Velit duis laborum et aliquip. Consectetur irure ipsum duis nostrud id magna. Proident velit enim consectetur fugiat culpa sint ad.
Non duis adipisicing cupidatat ipsum exercitation pariatur cupidatat laboris eiusmod est ullamco ea. Mollit eu non laboris consequat sint pariatur ipsum aliqua. Aliqua anim nostrud ex in dolore magna commodo aliquip qui do eu occaecat aliqua qui. Qui voluptate eu est ea elit et. Fugiat veniam esse magna magna anim. Magna ad adipisicing nostrud in consectetur aliquip eiusmod mollit anim officia.
Discusses fixed-point and floating-point representations in digital systems, covering key concepts like precision, accuracy, and the IEEE 754 standard.