Skip to main content
Graph
Search
fr
en
Login
Search
All
Categories
Concepts
Courses
Lectures
MOOCs
People
Practice
Publications
Startups
Units
Show all results for
Home
Lecture
Numerical Simulation of SDEs: Monte Carlo & Optimal Control
Graph Chatbot
Related lectures (32)
Previous
Page 1 of 4
Next
Estimators and Confidence Intervals
Explores bias, variance, unbiased estimators, and confidence intervals in statistical estimation.
Estimation and Confidence Intervals
Explores bias, variance, and confidence intervals in parameter estimation using examples and distributions.
Monte Carlo: Optimization and Estimation
Explores optimization and estimation in Monte Carlo methods, emphasizing Bayes-optimal groups and estimators.
Estimation Methods: Bias-Variance Tradeoff
Explores the MSE quality measure for estimators and the bias-variance tradeoff.
Monte Carlo Estimation: Error Analysis
Covers the Monte Carlo method for generating realizations and unbiased estimators.
Confidence Intervals: Gaussian Estimation
Explores confidence intervals, Gaussian estimation, Cramér-Rao inequality, and Maximum Likelihood Estimators.
Point Estimation Methods: MOM and MLE
Explores point estimation methods like MOM and MLE, discussing bias, variance, and examples.
Optimization and Simulation
Explores statistical analysis, mean square error, and bootstrapping methods in optimization and simulation.
Monte Carlo Method: Simulation and Inference
Covers the Monte Carlo method for statistical inferences using simulation tools and sample mean estimators.
Stochastic Simulation: Monte Carlo Method
Covers the properties and error estimates of the Monte Carlo method in stochastic simulation.